Math 249 Lecture 37 Notes

Daniel Raban

November 20, 2017

1 Chevalley's Theorem

1.1 Syzygies of a module

If we have a module over a ring, it'll satisfy some relations.

Definition 1.1. A syzygy of an *R*-module *M* with generators x_1, \ldots, x_n is a relation $a_1x_1 + \cdots + a_nx_n = 0$.

The following lemma will help us prove Chevalley's theorem, but it is just a general fact about rings. You should think of it as saying something about syzygies.

Lemma 1.1. If $h_1, \ldots, h_m \in \mathbb{R}^G$ are homogeneous, h_1 is not in the ideal of \mathbb{R}^G generated by h_2, \ldots, h_m , and $g_1h_1 + \cdots + g_mh_m = 0$, where $g_i \in \mathbb{R}$ are homogeneous, then $g_1 \in I_G$.

Proof. Notice that h_1 is not in the ideal of R generated by h_2, \ldots, h_m . Why? Suppose $h_1 = a_2h_2 + \cdots + a_mh_m$. Apply the Reynolds operator $R = \frac{1}{|G|} \sum_g g$ to get

$$h_1 = k(a_2)h_2 + \dots + k(a_m)h_m$$

where $k \in \mathbb{R}^G$. Now induct on the degree of g_1 . If deg $g_1 = 0$, then $g_1 = 0$. If deg $g_1 = d > 0$, then apply ∂_i to $g_1h_1 = \cdots + g_mh_m = 0$ to get a new relation of lower degree, $\partial_i(g_1)h_1 + \cdots$. By induction, $\partial_i(g_1) \in I_G$ for all *i*. Then $\partial_i g_1 = 0$ in \mathbb{R}/I_G for all *i*, so $g_1 = 0$ in \mathbb{R}/I_G .

1.2 Proof of Chevalley's theorem

We will prove these parts of Chevalley's theorem:

Theorem 1.1 (Chevalley). If $G
ightharpoondown \mathbb{R}^n$ is a Coxeter group, then

1. R^G is a polynomial ring $\mathbb{R}[f_1, \ldots, f_r]$; i.e. f_1, \ldots, f_r , the homogeneous minimal generators of I_G are algebraically independent.

2. $R = \mathbb{R}[x_1, \ldots, x_n]$ is a free R^G -module (of rank |G|).

Proof. First let's prove statement 2. We know that R/I_G generates R as an R^G module and that dim $R/I_G \ge |G|$. We want to show that dim $R/I_g = |G|$. Let's use divided difference operators. We know that ∂_w preserve I_G and so are well-defined on R/I_G .

On $(R/I_G)_d$, each ∂_w for $\ell(w) = d$ give a map $(R/I_G)_d \to \mathbb{R}$. We claim that these span $(R/I_G)_d^*$. Proceed by induction on d. For d = 0, $\partial_1 = \mathrm{id}$, so the base case is satisfied. Given an $f \in (R/I_G)_d$ such that $\partial_w f = 0$ for all $\ell(w) = d$, we want to show that f = 0. Look at $\partial_i f$. Let v have $\ell(v) = d - 1$; what is $\partial_v \partial_i f$ equal to?

If $w = vs_i$ with $\ell(w) = d$, then $\partial_v \partial_i f = \partial_w f = 0$. Otherwise, $\ell(vs_i) = d - 2$, so v has a reduced factorization that ends in s_i . In this case, $\partial_v = \partial_u \partial_i$, and we get that $\partial_v \partial_i = \partial_u \partial_i^2 = 0$. So $\partial_v \partial_i f = 0$ for all i, so by induction, $\partial_i f = 0$. Then $f \in (R/I_G)^G$, which are constants, so f = 0.

Now, let's prove statement 1 using our lemma from before. We want to show that if f_1, \ldots, f_n is a minimal homogeneous generating set of I_G (or of I_G), then the f_i are algebraically independent. Suppose $h(f_1, \ldots, f_n) = 0$, where $h(y_1, \ldots, y_n)$ is a nonzero polynomial. Without loss of generality, h is homogeneous of degree d relative to deg $y_i = d_i$.

Let $h_i = \frac{\partial h}{\partial u_i}(f_1, \dots, f_n)$. By the chain rule, for all k,

$$0 = \frac{\partial}{\partial x_k} h(f_1, \dots, f_n) = \sum_i h_i \frac{\partial f_i}{\partial x_k}$$

Without loss of generality, h_1, h_2, \ldots, h_m minimally generate the ideal R^G generated by all the h_i . Then $h_j = \sum_{i=1}^m g_{j,i}h_i$, where $g_{j,i} \in R^G$. Then

$$0 = \sum_{i} h_{i} \frac{\partial f_{i}}{\partial x_{k}} = \sum_{i=1}^{m} h_{i} \left(\frac{\partial f_{i}}{\partial x_{k}} + \sum_{j=m+1}^{N} g_{j,i} \frac{\partial f_{j}}{\partial x_{k}} \right)$$
$$\frac{\partial f_{1}}{\partial x_{k}} + \sum_{j>m} g_{j,i} \frac{\partial f_{j}}{\partial x_{k}} \in I_{g} = \sum_{i \neq 1} r_{i} f_{i}$$

Then $\sum_{k} x_k \frac{\partial f_1}{\partial x_k} = d_1 f_1 + \sum_{j>m} g_{-j}, i d_j f_j = \sum_{i \neq 1} d_i r_{-i} f_i$, which is a contradiction. **Corollary 1.1.** Let $H_{R/I_G}(q)$ be the generating function for the dim $(R/I_G)_d$ (in variable q). Then

$$\begin{split} H_{R/I_G}(q) &= \sum_{w \in G} q^{\ell(w)}.\\ \prod \frac{1}{1 - q^{d_i}} \cdot H_{R/I_G}(q) &= \frac{1}{1 - q^n} \end{split}$$